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Abstract: 

Background: Artificial intelligence (AI) has 

rapidly emerged as a transformative force in 

assisted reproductive technologies (ART), 

improving precision, objectivity, and 

reproducibility in laboratory workflows. From 

sperm and oocyte assessment to embryo grading 

and non-invasive genetic testing, AI-driven 

systems are redefining the embryology laboratory 

environment. 

Objective: This review aims to systematically 

evaluate recent applications of AI in ART 

laboratories, identify methodological strengths 

and limitations, and provide a comprehensive 

SWOT-based analysis to guide future research 

and implementation. 

Methods: A systematic search of PubMed, 

Scopus, and Web of Science databases was 

performed for studies published between 2020 

and 2025. Inclusion criteria focused on original 

research and reviews investigating AI, machine 

learning (ML), or deep learning (DL) within 

laboratory aspects of ART. Extracted data were 

categorized by application area, including sperm 

analysis, oocyte evaluation, embryo viability 

prediction, non-invasive diagnostics, and 

laboratory automation. 

Results: A total of 94 eligible studies were 

analyzed. Most employed DL and convolutional 

neural network (CNN) models for image-based 

assessment, achieving up to 97% accuracy in 

gamete and embryo evaluation. Approximately 

25% integrated time-lapse imaging, and 15% 

combined AI with multi-omics or cfDNA-based 

diagnostics. The SWOT analysis revealed key 

strengths (accuracy, reproducibility, predictive 

power), weaknesses (data heterogeneity, cost, 

ethical concerns), opportunities (automation, 

personalized medicine, integration with 

robotics), and threats (data privacy, bias, 

regulatory gaps). 

Conclusions: AI is not a replacement for human 

expertise but a powerful ally that enhances 

decision-making in ART laboratories. 

Standardized datasets, explainable algorithms, 

and ethical frameworks are essential for ensuring 

transparent, equitable, and clinically validated 

implementation of AI in reproductive medicine. 
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learning; Assisted reproductive technology; 
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 Introduction 

Effective solutions for the management of 

infertility. Despite continuous improvements in 

laboratory techniques, such as controlled ovarian 

stimulation, intracytoplasmic sperm injection 

(ICSI), and time-lapse embryo imaging, success 

rates of in vitro fertilization (IVF) remain 

suboptimal, with global live birth rates ranging 

between 30% and 40% per initiated cycle(1, 2). 

One of the major challenges in ART laboratories 

is the high degree of subjectivity in gamete and 

embryo evaluation, which depends largely on the 

experience and perception of embryologists. This 

subjectivity contributes to inter-observer 

variability, inconsistent grading, and 

unpredictable clinical outcomes (2). 

Artificial intelligence (AI), particularly machine 

learning (ML) and deep learning (DL), has 

emerged as a transformative paradigm capable of 

overcoming these limitations. By analyzing 

complex datasets and extracting latent patterns 

beyond human perception, AI offers the potential 

to enhance decision-making accuracy, efficiency, 

and standardization in ART laboratories (3, 

4)Over the last decade, AI has been increasingly 

applied across multiple stages of ART, including 

sperm selection, oocyte classification, embryo 

viability prediction, and implantation assessment 

(5, 6). 

Recent studies have demonstrated the ability of 

convolutional neural networks (CNNs) to 

evaluate blastocyst morphology and predict 

implantation outcomes with higher 

reproducibility than manual scoring systems (7, 

8). Moreover, deep learning–based non-invasive 

preimplantation genetic testing (niPGT) 

approaches using cell-free DNA (cfDNA) from 

spent culture media have introduced a paradigm 

shift toward safer and more efficient embryo 
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selection(9). Similarly, AI-driven sperm analysis 

tools have improved assessment of motility and 

morphology, offering more objective and 

automated evaluation compared to traditional 

computer-assisted semen analysis (CASA) 

systems (10). 

Beyond imaging and morphology, AI has also 

been integrated with multi-omics data, electronic 

medical records, and wearable sensors to predict 

treatment outcomes and personalize therapeutic 

strategies(11). These integrative frameworks are 

redefining precision medicine in reproductive 

healthcare. Nonetheless, challenges remain, 

including the need for standardized datasets, 

algorithm transparency, and ethical 

considerations surrounding patient privacy and 

clinical accountability (12). 

Therefore, this review aims to provide a 

comprehensive overview of the emerging 

applications of artificial intelligence in assisted 

reproduction, with a specific focus on laboratory 

aspects. It discusses the recent technological 

advances, laboratory automation, and validation 

requirements while exploring the future 

directions toward fully digital and AI-empowered 

reproductive laboratories. 

Methods 

Review criteria: search strategy  

This study was designed as a comprehensive 

narrative and semi-systematic review focusing on 

the laboratory applications of artificial 

intelligence (AI) within assisted reproductive 

technologies (ART). The methodological 

framework followed the recommendations for 

scoping reviews outlined by the Preferred 

Reporting Items for Systematic Reviews and 

Meta-Analyses Extension for Scoping Reviews 

(PRISMA-ScR) (13). The objective was to 

identify, synthesize, and critically evaluate recent 

literature (2020–2025) addressing the 

implementation of machine learning, deep 

learning, and computational modeling in ART 

laboratory settings. 

Literature Search Strategy  

A structured literature search was conducted 

across three major scientific databases — 

PubMed, Scopus, and Web of Science — 

between January 2020 and February 2025. The 

following search terms and Boolean 

combinations were used :("artificial intelligence" 

OR "machine learning" OR "deep learning" OR 

"neural networks") AND ("assisted reproduction" 

OR "IVF" OR "in vitro fertilization" OR 

"embryology" OR "embryo grading" OR "sperm 

analysis" OR "oocyte" OR "blastocyst"). 

Searches were limited to English-language 

articles published in peer-reviewed journals. 

Additional sources, including conference 

proceedings, preprints, and cross-referenced 

citations, were manually screened to ensure 

comprehensive coverage of the latest advances. 

Studies were included if they met the following 

criteria: Focused on applications of AI, ML, or 

DL in ART laboratory procedures. Involved 

human or animal models relevant to reproductive 

medicine. Reported quantifiable laboratory or 

clinical outcomes (e.g., embryo viability, 

fertilization rate, implantation rate).Published 

between 2020 and 2025. Exclusion criteria 

included: 

Non-English publications, editorials, and 

commentaries. Studies not related to laboratory 

or diagnostic aspects of ART. Duplicate or non-

peer-reviewed reports. 

Data Extraction and Synthesis 

Two reviewers independently screened titles, 

abstracts, and full texts to ensure adherence to 

inclusion criteria. Extracted data included study 

design, AI methodology, dataset characteristics, 

validation strategies, and clinical outcomes. 

Discrepancies were resolved by consensus. 

Data synthesis was performed using thematic 

analysis, categorizing studies into five major 

domains: 

1) AI in sperm analysis and selection 

2) AI in oocyte assessment 

3) AI in embryo grading and viability 

prediction 

4) AI in non-invasive genetic and metabolic 

assessment 

5) AI in laboratory automation and quality 

control 

The evidence was qualitatively summarized to 

identify patterns, trends, and gaps in current 

research. 

 Results 

Overview of Included Studies 

A total of 94 studies published between 2020 and 

2025 were identified and analyzed after applying 

inclusion and exclusion criteria. Most of the 

included studies employed deep learning (DL) 

and convolutional neural network (CNN) models 

for embryo or sperm image interpretation, while 

others implemented machine learning (ML) 

approaches for predictive analytics and outcome 

optimization. 
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Figur.2. Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses 

(PRISMA) workflow reporting the literature 

search strategy 

Approximately 60% of the studies used 

retrospective datasets from IVF clinics, whereas 

25% utilized time-lapse imaging systems, and 

15% integrated multi-omics or cfDNA-based 

non-invasive diagnostics (14, 15). The included 

studies are categorized by their primary 

application area in Table 1, which provides a 

summary of key examples, the AI models 

employed, and their main reported outcomes. 

 

Table 1: Studies included in this systematic review, categorized by primary application area 

Primary Application Area 
Key Examples of AI 

Models / Systems 
Main Reported Outcomes Grade of Evidencea 

Reference 

Numbers 

AI in Sperm Selection and 

Analysis 

CNN-based CASA, 

ML-microfluidic 

integration 

Accuracy up to 97% in 

morphology classification; 

improved sperm recovery 

rates; reduced DNA 

fragmentation 

IIa (16-23) 

AI in Oocyte Evaluation 

DL for polar body & 

spindle imaging; ML 

with transcriptomic 

data 

Improved maturity & 

quality classification; 

enhanced fertilization 

prediction 

IIb (24-29) 

AI in Embryo Grading and 

Viability Prediction 

iDAScore, KIDScore, 

STORK, GANs for 

data augmentation 

Implantation prediction 

accuracy 80-90%; 
Ia (30-41) 
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improved euploidy 

prediction (AUC >0.92) 

AI in Non-Invasive Genetic 

and Metabolic Testing 

ML for cfDNA 

fragmentomics; 

Raman spectroscopy 

AI 

>85% sensitivity in 

aneuploidy detection; non-

invasive metabolic 

monitoring 

IIa (42-52) 

AI in Laboratory 

Automation and Quality 

Control 

AI-guided robotics for 

ICSI; predictive 

maintenance 

algorithms 

Submicron precision in 

manipulation; real-time 

environmental monitoring 

III (53-61) 

aGrade of Evidence Legend (Adapted from 

Oxford Centre for Evidence-Based Medicine 

Levels): 

• Ia: Evidence from meta-analysis of high-quality, 

randomized controlled trials. 

• IIa: Evidence from at least one well-designed 

controlled study without randomization. 

• IIb: Evidence from at least one other type of 

well-designed quasi-experimental study. 

• III: Evidence from well-designed non-

experimental descriptive studies, such as 

comparative studies, correlation studies, or case-

control studies. 

AI in Sperm Selection and Analysis 

AI-based sperm assessment has markedly 

enhanced the precision and reproducibility of 

semen evaluation, overcoming the inherent 

subjectivity associated with manual microscopic 

grading. Traditional computer-aided sperm 

analysis (CASA) systems are limited by 

threshold-dependent algorithms that cannot adapt 

to morphological variability across patients or 

laboratories. In contrast, deep learning–assisted 

CASA platforms utilize convolutional neural 

networks (CNNs) to automatically extract 

complex spatial features from thousands of sperm 

images, enabling accurate classification of 

motility patterns, head morphology, midpiece 

integrity, and tail abnormalities (16, 17). 

Recent studies report that AI-enhanced CASA 

systems achieved up to 95–97% accuracy in 

distinguishing morphologically normal 

spermatozoa from abnormal ones-significantly 

higher than traditional manual or semi-automated 

methods (18, 19). Such systems also 

demonstrated higher intra- and inter-observer 

consistency, reducing analytical bias in fertility 

assessments. 

The integration of machine learning (ML) with 

microfluidic sperm-sorting devices represents 

another important advancement. Microfluidics, 

which mimics the physiological 

microenvironment of the female reproductive 

tract, can be optimized using ML algorithms to 

dynamically adjust flow parameters and selection 

thresholds. Studies have shown that AI-driven 

microfluidic systems improved sperm recovery 

rates, reduced DNA fragmentation, and shortened 

processing times by more than 40% compared 

with conventional density-gradient 

centrifugation(18, 20).These technologies 

collectively improve selection of high-quality, 

motile spermatozoa while minimizing oxidative 

stress and mechanical damage-factors crucial for 

subsequent fertilization and embryo 

development(21). 

Furthermore, AI models have been trained to 

predict fertilization outcomes based on integrated 

sperm motility, morphokinetic trajectories, and 

genetic integrity data, offering predictive insights 

into sperm performance before insemination. 

This predictive capability supports personalized 

ART protocols and potentially enhances 

fertilization and live birth rates (22, 23). 

AI in Oocyte Evaluation 

Accurate evaluation of oocyte quality is pivotal 

for predicting fertilization success and embryonic 

development. Conventional morphological 

assessment remains subjective and limited to 

visual inspection under polarized or light 

microscopy. AI and DL technologies have 

addressed this limitation by introducing 
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objective, quantifiable models (24, 25).  AI in 

Oocyte Evaluation (6, 26) . 

In addition, ML algorithms integrating 

transcriptomic data from cumulus and granulosa 

cells-alongside patient age, BMI, and hormonal 

profiles-have enhanced the accuracy of 

predicting oocyte retrieval and fertilization 

outcomes(27).These multimodal models provide 

deeper biological context by linking visual and 

molecular signatures of oocyte quality. 

Notably, explainable AI (XAI) models are 

emerging to improve interpretability by 

visualizing feature maps responsible for oocyte 

classification. Such explainable frameworks 

could facilitate regulatory acceptance and clinical 

trust by enabling embryologists to understand 

algorithmic reasoning (28, 29). 

 AI in Embryo Grading and Viability 

Prediction 

Embryo evaluation is a cornerstone of ART 

laboratory decision-making, yet remains highly 

dependent on subjective human judgment. The 

introduction of AI-driven embryo grading 

systems has transformed this process, enhancing 

consistency and predictive power (30). Deep 

learning models such as iDAScore, KIDScore, 

and STORK analyze time-lapse images to 

quantify morphokinetic features—cell division 

timing, fragmentation dynamics, blastocyst 

expansion, and trophectoderm morphology—

providing implantation predictions with 80–90% 

accuracy, surpassing manual grading .(31 -33)   

Generative AI, particularly Generative 

Adversarial Networks (GANs), has recently been 

applied to augment embryo datasets by 

generating realistic synthetic images. These 

expanded datasets enable better model 

generalization and reduce overfitting in data-

limited environments  .(34 -36)   

Moreover, hybrid models combining 

morphokinetic and metabolomic data have 

demonstrated improved prediction of euploidy 

and live birth potential. For example, AI-based 

morphokinetic–metabolomic integrators 

achieved AUC > 0.92 for euploid embryo 

prediction, highlighting the translational potential 

of multi-parameter AI frameworks (6, 37, 38) .  

Importantly, the goal is not to replace 

embryologists but to create decision-support 

systems that enhance reproducibility, minimize 

bias, and provide real-time feedback during 

embryo selection. Ongoing clinical validation 

studies are assessing the utility of these tools for 

improving pregnancy and live birth rates (39-41). 

 AI in Non-Invasive Genetic and Metabolic 

Testing 

Non-invasive preimplantation genetic testing 

(niPGT) has gained momentum as an alternative 

to trophectoderm biopsy, reducing potential harm 

to embryos. AI-assisted analysis of cell-free 

DNA (cfDNA) and spent culture media allows 

reliable chromosomal and metabolic assessment 

without physical intervention (42, 43). Machine 

learning models trained on cfDNA 

fragmentomics, methylation profiles, and 

secretome data have achieved sensitivity 

exceeding 85% in detecting aneuploid embryos 

(44-46)  .Integration of proteomic and 

metabolomic markers further improves embryo 

viability prediction, allowing stratification of 

embryos based on implantation potential  .(47  ,48 )  

AI algorithms are also being applied to mass 

spectrometry and Raman spectroscopy data from 

embryo culture media to detect biochemical 

changes linked to metabolic activity. These 

models provide continuous, label-free embryo 

monitoring, promoting safer and more informed 

selection (49, 50). However, despite promising 

performance, niPGT algorithms require large-

scale multicenter validation and standardization 

before clinical deployment (51, 52). 

AI in Laboratory Automation and Quality 

Control 

AI, coupled with robotics and Internet of Things 

(IoT) technology, is driving the automation of 

ART laboratories, improving precision and 

reducing human error. Automated 

micromanipulation systems guided by AI vision 

algorithms have achieved submicron precision in 

handling gametes and embryos during ICSI and 

biopsy procedures .(53  ,54)    Robotic arms 

integrated with vision-based AI can identify 

oocytes, inject sperm, and transfer embryos 

autonomously while maintaining high 

consistency in success rates(55). 

Furthermore, predictive maintenance algorithms 

are being deployed for incubators and culture 

systems, enabling real-time monitoring of 

temperature, pH, and gas composition. By 

applying anomaly-detection ML models, 

laboratories can detect early deviations and 

prevent equipment failures  .(56  ,57)  These 

systems also generate large volumes of 

operational data, which can be used to 

continuously optimize environmental conditions 

for embryo development(58, 59).  AI-based 
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quality control systems use historical outcome 

data to identify laboratory workflow bottlenecks 

and performance trends, facilitating continuous 

process improvement and compliance with 

accreditation standards (60, 61).  Collectively, 

these advancements are paving the way toward 

“smart laboratories”, where automation, robotics, 

and machine intelligence harmoniously 

collaborate to enhance laboratory reliability, 

safety, and efficiency(58). 

 

Table2. “Overview of Machine Learning and 

Deep Learning Models in ART” 

 

 

Enhancing Accuracy and Reproducibility 

One of the most consistent findings across recent 

studies is that AI significantly reduces inter- and 

intra-observer variability, addressing a long-

standing limitation in ART laboratories (35, 62), 

Traditional grading of gametes and embryos is 

highly dependent on the subjective experience of 

embryologists, leading to inconsistent 

interpretations and variable clinical outcomes. 

AI-based tools such as deep learning–assisted 

CASA systems and CNN-based embryo scoring 

models provide reproducible and quantifiable 

assessments that outperform manual approaches 

in predictive accuracy (7, 63). 

The incorporation of large-scale imaging and 

time-lapse datasets has allowed these systems to 

recognize subtle morphological and 

morphokinetic markers correlated with 

developmental competence, euploidy, and 

implantation success. As a result, AI enhances 

reproducibility while offering clinician’s 

objective, evidence-based parameters to support 

embryo and gamete selection. 

Translational Potential and Clinical Benefits 

AI-based decision-support systems are not 

designed to replace embryologists but rather to 

augment their analytical capacity. Clinical 

studies indicate that AI-assisted embryo selection 

correlates with improved implantation and 

ongoing pregnancy rates, particularly when 

combined with time-lapse imaging and 

morphokinetic analysis (6, 64). 

Similarly, deep learning–based sperm and oocyte 

evaluation systems provide early, accurate, and 

standardized data that allow for better timing of 

fertilization and embryo transfer (65, 66). 

Beyond improving laboratory precision, AI also 

supports personalized reproductive medicine by 

integrating multi-omics and clinical data. 

Machine learning models that consider patient-

specific features-such as age, BMI, hormonal 

profile, and genetic background-can tailor 

stimulation protocols and optimize embryo 

transfer strategies, thereby improving success 

rates and reducing the physical and emotional 

burden of repeated IVF cycles (67-69). 

 Integration with Robotics, Automation, and 

Multi-Omics 

The fusion of AI with robotics and automation 

heralds the era of the “intelligent laboratory.” AI-

driven micromanipulation systems have already 

demonstrated precise control in ICSI and embryo 

biopsy procedures, reducing human dependency 

and operator-induced errors (70, 71). 

Predictive maintenance algorithms further 

enhance laboratory stability by continuously 

monitoring incubator conditions and preventing 

fluctuations detrimental to embryo culture(58). 

Simultaneously, integration of AI with multi-

omics datasets-including transcriptomic, 

proteomic, and metabolomic data-offers deeper 

insight into gamete and embryo physiology(72). 

Such integrative approaches are paving the way 

toward systems-level reproductive biology, 

where AI correlates molecular and phenotypic 

profiles to predict developmental potential with 

unprecedented precision (73). 

Ethical, Regulatory, and Practical Considerations 

Despite its promise, the implementation of AI in 

ART laboratories introduces ethical and 

regulatory challenges (74). Data privacy and 

algorithmic transparency remain major concerns, 

particularly given the sensitive nature of 

reproductive data. The “black-box” nature of 

deep neural networks makes it difficult for 

clinicians to interpret model decisions and ensure 

accountability(40). 

Efforts to address these issues include the 

development of explainable AI (XAI) 

frameworks, which provide visual maps or 

interpretable decision pathways, increasing 

clinician confidence and patient trust (75). 

Regulatory agencies and professional societies 

must also define standardized validation 

protocols, ensuring that AI systems are clinically 

safe, unbiased, and generalizable across diverse 

populations(76). 

The landscape of reproductive medicine. From 

sperm and oocyte evaluation to embryo grading, 

non-invasive genetic testing, and laboratory 

automation, AI-driven systems are enhancing 

precision, objectivity, and efficiency in every 

stage of the reproductive process. The 
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convergence of computer vision, deep learning 

(DL), and predictive analytics has enabled the 

extraction of clinically meaningful patterns from 

large and complex datasets, improving embryo 

selection accuracy, standardizing laboratory 

workflows, and potentially increasing 

implantation and live birth rates(77, 78). 

Table2. “Overview of Machine Learning and Deep Learning Models in ART” 

Stage ML/DL Model Application Brief Description Input Data Type 

Sperm 

Analysis 

CNN 
Sperm morphology 

assessment 

Extract complex visual 

features from sperm images 

Microscopic 

images 

Classical ML (SVM, 

Random Forest, 

XGBoost) 

Predict sperm quality 
Analyze morphologic and 

motility features 

Numerical & 

analytical features 

GAN Dataset augmentation 
Generate synthetic sperm 

images to prevent overfitting 
Images 

LSTM / RNN 
Sperm trajectory 

prediction 

Analyze temporal motion 

sequences of sperm 

Time-series / 

spatiotemporal 

data 

Oocyte 

Evaluation 

CNN 
Maturity & quality 

detection 

Analyze microscopic images 

of oocytes and polar body 
Images 

Classical ML (SVM, 

Random Forest) 

Predict fertilization 

success 

Combine image features with 

patient clinical parameters 

Images + clinical 

data 

Ensemble Models 
Improve prediction 

accuracy 

Combine multiple models to 

reduce error 

Images + clinical 

data 

Explainable AI (XAI) 
Model decision 

transparency 

Highlight important features 

influencing oocyte quality 
Images 

Embryo 

Grading & 

Viability 

CNN 
Blastocyst image 

assessment 

Predict embryo quality and 

implantation potential 
Time-lapse images 

LSTM / RNN 
Embryo time-lapse 

growth analysis 

Predict development based on 

sequential images 
Sequential images 

GAN Synthetic embryo data 
Generate synthetic images to 

augment datasets 
Images 

Hybrid Models (CNN 

+ ML) 

Predict euploidy & live 

birth rates 

Combine morphology and 

multi-omics data 

Images + multi-

omics data 

Non-

invasive 

Genetic & 

Metabolic 

Testing 

ML (Random Forest, 

XGBoost) 
Predict aneuploidy 

Analyze cfDNA, proteomics, 

and metabolomics 
Molecular data 

CNN 
Culture media image 

analysis 

Detect metabolic and health 

changes in embryos 
Images 

Autoencoder 

Dimensionality 

reduction & pattern 

discovery 

Extract hidden features from 

molecular datasets 
Multi-omics data 

Lab 

Automation 

& QC 

CNN + Vision-based 

AI 

Robotic ICSI & biopsy 

guidance 

Automated detection of 

oocytes & sperm, robot 

assistance 

Images 

ML (Anomaly 

Detection) 

Predict equipment 

failure 

Monitor incubator & 

equipment parameters 
Sensor data 

Reinforcement 

Learning 
Optimize lab conditions 

Learn policies for optimal 

environmental control 

Environmental & 

outcome data 

Predictive Models Workflow optimization 
Predict errors and improve 

quality control 

Operational & 

outcome data 

 

 Limitations 

Despite its transformative potential, several 

limitations constrain the current use of AI in ART. 

First, the lack of standardized datasets and image 

acquisition protocols hampers reproducibility across 

centers and populations. Most available datasets are 
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retrospective, limited in sample diversity, and 

proprietary, restricting transparency and algorithmic 

benchmarking(79, 80).  

Second, data privacy and algorithmic bias remain key 

concerns. Deep learning systems often operate as 

“black boxes,” making it difficult to interpret or audit 

their decision processes, which can limit clinical trust 

and regulatory approval. Third, AI applications are 

frequently tested on small, homogeneous datasets, 

limiting generalizability and real-world 

applicability(81).  

In addition, the integration of AI into ART laboratories 

requires substantial infrastructure investment, 

including data management systems, computational 

resources, and personnel training. These barriers can 

delay adoption, particularly in low-resource clinical 

settings. Finally, the ethical implications-such as 

patient consent, data ownership, and accountability for 

AI-driven recommendations-must be carefully 

addressed before large-scale deployment(82). 

  Future Directions 

Future research must focus on building multicenter, 

standardized, and open-access datasets that enable 

transparent and reproducible AI development(83). 

Collaborative consortia between fertility clinics, 

academic institutions, and AI developers will be 

crucial for ensuring data harmonization and model 

generalizability(84). 

The next generation of AI tools should prioritize 

explainability, fairness, and interoperability, aligning 

with the principles of responsible AI. Hybrid systems 

that integrate robotics, multi-omics profiling, and 

digital twins could provide real-time simulation and 

optimization of laboratory conditions, advancing the 

vision of a fully automated, intelligent ART 

laboratory(85). 

Additionally, AI’s potential to guide non-invasive 

embryo selection and personalized treatment planning 

should be explored through prospective, randomized 

clinical trials. Integration with wearable biosensors 

and telemedicine platforms could expand reproductive 

monitoring beyond laboratory boundaries, enhancing 

continuity of care(86) . 

Finally, international regulatory bodies and scientific 

societies should develop unified frameworks for 

algorithm validation, quality assurance, and ethical 

governance. Only through these concerted efforts can 

AI truly fulfill its promise of reshaping reproductive 

healthcare—transforming ART from a procedure of 

probability into a science of precision.Discussion: 

The integration of artificial intelligence (AI) into 

assisted reproductive technologies (ART) represents a 

transformative leap toward objective, data-driven 

laboratory medicine. By uniting computational 

science and embryology, AI offers new perspectives 

for understanding gamete and embryo biology, 

optimizing laboratory workflows, and improving 

clinical outcomes. This review highlights how recent 

AI-driven innovations—ranging from sperm 

assessment to non-invasive embryo testing—are 

reshaping the operational and analytical landscape of 

ART laboratories. 

Strengths-weaknesses-opportunitiesthreats (SWOT) 

analysis 

A SWOT analysis has been conducted to assess the 

available evidence linking the artificial intelligence in 

ART Laboratories (Fig.2) rengths-weaknesses-

opportunitiesthreats (SWOT) analysis: 

Strengths (Internal, positive factors) 

• Enhanced Accuracy and Objectivity: Reduces reliance 

on subjective embryologist assessment and minimizes 

human error in selecting sperm, oocytes, and embryos. 

• Superior Predictive Power: Utilizes predictive models 

based on morphokinetic and multi-omics data to 

improve implantation and live birth rates. 

• Laboratory Process Automation: Integrates with 

robotics to perform sensitive procedures like ICSI and 

embryo biopsy with high, sub-micron precision. 

• Improved Quality Control (QC) and 

Maintenance: Employs predictive algorithms to 

monitor incubator conditions in real-time, preventing 

detrimental environmental fluctuations. 

• Increased Reproducibility: Significantly reduces inter- 

and intra-observer variability, standardizing 

assessments across the laboratory. 

Weaknesses (Internal, negative factors) 

• Limited Standardized Datasets: A lack of unified data 

acquisition protocols and limited demographic 

diversity in datasets hinder reproducibility and 

generalizability. 

• "Black-Box" Nature of Models: The lack of 

transparency in complex AI decision-making 

processes can erode clinical trust and complicate 

accountability. 

• High Implementation Costs: Significant investment is 

required for computational infrastructure, data storage 

systems, and specialized staff training. 

• Ethical and Regulatory Hurdles: Unresolved concerns 

regarding patient data privacy, data ownership, and 

liability for AI-driven clinical recommendations. 

Opportunities (External, positive factors) 

• Integration with Multi-Omics Data: Combining 

genomic, transcriptomic, and metabolomic data to 

create more accurate, holistic predictive models of 

embryo viability. 
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• Development of Fully Intelligent 

Laboratories: Creating integrated ecosystems that 

leverage AI, robotics, and the Internet of Things (IoT) 

to create fully optimized, automated workflows. 

• Advancement of Personalized Medicine: Tailoring 

stimulation protocols and embryo transfer strategies 

based on individual patient clinical, molecular, and 

genetic profiles. 

• International Collaboration and 

Consortia: Forming multicenter partnerships to 

develop large-scale, standardized, and diverse 

datasets for building robust and generalizable 

models. 

Threats (External, negative factors) 

• Data Security and Privacy Risks: Potential for 

misuse of highly sensitive reproductive and 

genetic data, alongside challenges in ensuring 

truly informed consent for data usage. 

• Algorithmic Bias: Models trained on limited, 

imbalanced, or non-diverse datasets may 

perpetuate or even amplify biases, leading to poor 

performance when applied to broader 

populations. 

• Regulatory and Validation Challenges: The 

absence of universally accepted frameworks for 

the clinical validation, certification, and ongoing 

monitoring of AI algorithms in ART. 

• Resistance to Adoption: Reluctance among 

clinicians and embryologists to adopt and trust AI 

systems due to a lack of explainability, 

insufficient training, or concerns about job 

displacement. 

1. Fig. 2. Strengths-Weaknesses-Opportunities-

Threats (SWOT) analysis has been conducted to 

define AI in ART laboratories 
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Conclusion 

The rapid evolution of artificial intelligence (AI) in 

assisted reproductive technologies (ART) has 

redefined the landscape of reproductive medicine (87). 

From sperm and oocyte evaluation to embryo grading, 

non-invasive genetic testing, and laboratory 

automation, AI-driven systems are enhancing 

precision, objectivity, and efficiency in every stage of 

the reproductive process (88). The convergence of 

computer vision, deep learning (DL), and predictive 

analytics has enabled the extraction of clinically 

meaningful patterns from large and complex datasets, 

improving embryo selection accuracy, standardizing 

laboratory workflows, and potentially increasing 

implantation and live birth rates(89, 90).AI is not a 

replacement for human expertise but a powerful ally 

that augments the capabilities of embryologists and 

clinicians. By reducing subjectivity, minimizing inter-

observer variability, and generating evidence-based 

recommendations (91, 92), AI promotes consistency 

and transparency in laboratory decision-making. Its 

role extends beyond image analysis to integrative 

prediction models that combine multi-omics, cfDNA, 

and patient clinical data, paving the way for 

personalized and precision reproductive medicine (93, 

94).As these technologies mature, the clinical 

translation of AI in ART will depend on rigorous 

validation, ethical oversight, and cross-disciplinary 

collaboration (92). The successful integration of AI 

will ultimately transform reproductive laboratories 

into intelligent ecosystems capable of adaptive 

learning, continuous quality improvement, and 

enhanced patient outcomes. 
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