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Abstract:

Background: Artificial intelligence (Al) has
rapidly emerged as a transformative force in
assisted reproductive technologies (ART),
improving  precision, objectivity, and
reproducibility in laboratory workflows. From
sperm and oocyte assessment to embryo grading
and non-invasive genetic testing, Al-driven
systems are redefining the embryology laboratory
environment.

Objective: This review aims to systematically
evaluate recent applications of Al in ART
laboratories, identify methodological strengths
and limitations, and provide a comprehensive
SWOT-based analysis to guide future research
and implementation.

Methods: A systematic search of PubMed,
Scopus, and Web of Science databases was
performed for studies published between 2020
and 2025. Inclusion criteria focused on original
research and reviews investigating Al, machine
learning (ML), or deep learning (DL) within
laboratory aspects of ART. Extracted data were
categorized by application area, including sperm
analysis, oocyte evaluation, embryo viability
prediction, non-invasive diagnostics, and
laboratory automation.

Results: A total of 94 eligible studies were
analyzed. Most employed DL and convolutional
neural network (CNN) models for image-based
assessment, achieving up to 97% accuracy in
gamete and embryo evaluation. Approximately
25% integrated time-lapse imaging, and 15%
combined Al with multi-omics or cfDNA-based
diagnostics. The SWOT analysis revealed key
strengths (accuracy, reproducibility, predictive
power), weaknesses (data heterogeneity, cost,
ethical concerns), opportunities (automation,
personalized medicine, integration  with
robotics), and threats (data privacy, bias,
regulatory gaps).

Conclusions: Al is not a replacement for human
expertise but a powerful ally that enhances
decision-making in ~ ART  laboratories.
Standardized datasets, explainable algorithms,
and ethical frameworks are essential for ensuring
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transparent, equitable, and clinically validated
implementation of Al in reproductive medicine.
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learning; Assisted reproductive technology;
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Abbreviations: Al: Artificial intelligence; ML:
Machine learning; DL: Deep learning; CNN:
Convolutional neural network; SVM: Support
vector machine; ART: Assisted reproductive
technology; IVF: In vitro fertilization; ICSI:
Intracytoplasmic sperm injection; TLS: Time-
lapse systems; PGT-A: Preimplantation genetic
testing for aneuploidy; QC: Quality control; ICM:
Inner cell mass; TE: Trophectoderm.
Introduction

Effective solutions for the management of
infertility. Despite continuous improvements in
laboratory techniques, such as controlled ovarian
stimulation, intracytoplasmic sperm injection
(ICSI), and time-lapse embryo imaging, success
rates of in vitro fertilization (IVF) remain
suboptimal, with global live birth rates ranging
between 30% and 40% per initiated cycle(1, 2).
One of the major challenges in ART laboratories
is the high degree of subjectivity in gamete and
embryo evaluation, which depends largely on the
experience and perception of embryologists. This
subjectivity  contributes to  inter-observer
variability, inconsistent grading, and
unpredictable clinical outcomes (2).

Artificial intelligence (Al), particularly machine
learning (ML) and deep learning (DL), has
emerged as a transformative paradigm capable of
overcoming these limitations. By analyzing
complex datasets and extracting latent patterns
beyond human perception, Al offers the potential
to enhance decision-making accuracy, efficiency,
and standardization in ART laboratories (3,
4)Over the last decade, Al has been increasingly
applied across multiple stages of ART, including
sperm selection, oocyte classification, embryo
viability prediction, and implantation assessment
(5, 6).

Recent studies have demonstrated the ability of
convolutional neural networks (CNNs) to
evaluate blastocyst morphology and predict
implantation outcomes with higher
reproducibility than manual scoring systems (7,
8). Moreover, deep learning—based non-invasive
preimplantation  genetic  testing  (niPGT)
approaches using cell-free DNA (cfDNA) from
spent culture media have introduced a paradigm
shift toward safer and more efficient embryo
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selection(9). Similarly, Al-driven sperm analysis
tools have improved assessment of motility and
morphology, offering more objective and
automated evaluation compared to traditional
computer-assisted semen analysis (CASA)
systems (10).

Beyond imaging and morphology, Al has also
been integrated with multi-omics data, electronic
medical records, and wearable sensors to predict
treatment outcomes and personalize therapeutic
strategies(11). These integrative frameworks are
redefining precision medicine in reproductive

healthcare. Nonetheless, challenges remain,
including the need for standardized datasets,
algorithm transparency, and ethical

considerations surrounding patient privacy and
clinical accountability (12).

Therefore, this review aims to provide a
comprehensive overview of the emerging
applications of artificial intelligence in assisted
reproduction, with a specific focus on laboratory
aspects. It discusses the recent technological
advances, laboratory automation, and validation
requirements while exploring the future
directions toward fully digital and Al-empowered
reproductive laboratories.

Methods

Review criteria: search strategy

This study was designed as a comprehensive
narrative and semi-systematic review focusing on
the laboratory applications of artificial
intelligence (AI) within assisted reproductive
technologies (ART). The methodological
framework followed the recommendations for
scoping reviews outlined by the Preferred
Reporting Items for Systematic Reviews and
Meta-Analyses Extension for Scoping Reviews
(PRISMA-ScR) (13). The objective was to
identify, synthesize, and critically evaluate recent
literature (2020-2025) addressing  the
implementation of machine learning, deep
learning, and computational modeling in ART
laboratory settings.

Literature Search Strategy

A structured literature search was conducted
across three major scientific databases —
PubMed, Scopus, and Web of Science —
between January 2020 and February 2025. The
following search terms and  Boolean
combinations were used :("artificial intelligence"
OR "machine learning" OR "deep learning" OR
"neural networks") AND ("assisted reproduction”
OR "IVF" OR "in vitro fertilization" OR
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"embryology" OR "embryo grading" OR "sperm
analysis" OR "oocyte" OR "blastocyst").
Searches were limited to English-language
articles published in peer-reviewed journals.
Additional  sources, including conference
proceedings, preprints, and cross-referenced
citations, were manually screened to ensure
comprehensive coverage of the latest advances.
Studies were included if they met the following
criteria: Focused on applications of Al, ML, or
DL in ART Ilaboratory procedures. Involved
human or animal models relevant to reproductive
medicine. Reported quantifiable laboratory or
clinical outcomes (e.g., embryo viability,
fertilization rate, implantation rate).Published
between 2020 and 2025. Exclusion criteria
included:
Non-English  publications, editorials, and
commentaries. Studies not related to laboratory
or diagnostic aspects of ART. Duplicate or non-
peer-reviewed reports.
Data Extraction and Synthesis
Two reviewers independently screened titles,
abstracts, and full texts to ensure adherence to
inclusion criteria. Extracted data included study
design, Al methodology, dataset characteristics,
validation strategies, and clinical outcomes.
Discrepancies were resolved by consensus.
Data synthesis was performed using thematic
analysis, categorizing studies into five major
domains:
1) Al in sperm analysis and selection
2) Al in oocyte assessment
3) Al in embryo grading and viability
prediction
4) Al in non-invasive genetic and metabolic
assessment
5) Al in laboratory automation and quality
control
The evidence was qualitatively summarized to
identify patterns, trends, and gaps in current
research.
Results
Overview of Included Studies
A total of 94 studies published between 2020 and
2025 were identified and analyzed after applying
inclusion and exclusion criteria. Most of the
included studies employed deep learning (DL)
and convolutional neural network (CNN) models
for embryo or sperm image interpretation, while
others implemented machine learning (ML)
approaches for predictive analytics and outcome
optimization.
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search strategy

Approximately 60% of the studies wused
retrospective datasets from IVF clinics, whereas
25% utilized time-lapse imaging systems, and
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15% integrated multi-omics or cfDNA-based
non-invasive diagnostics (14, 15). The included
studies are categorized by their primary
application area in Table 1, which provides a
summary of key examples, the Al models

employed, and their main reported outcomes.

Table 1: Studies included in this systematic review, categorized by primary application area

Key Examples of Al Reference
Primary Application Area Main Reported Outcomes | Grade of Evidence®
Models / Systems Numbers
Accuracy up to 97% in
CNN-based CASA, morphology classification;
Al in Sperm Selection and _ o )
ML-microfluidic improved sperm recovery ITa (16-23)
Analysis ) )
integration rates; reduced DNA
fragmentation
DL for polar body & Improved maturity &
spindle imaging; ML quality classification;
Al in Oocyte Evaluation _ _ _ o ITb (24-29)
with transcriptomic enhanced fertilization
data prediction
iDAScore, KIDScore, ] o
Al in Embryo Grading and Implantation prediction
STORK, GANs for Ia (30-41)
Viability Prediction accuracy 80-90%;

data augmentation
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improved euploidy

prediction (AUC >0.92)
ML for cfDNA >85% sensitivity in
Al in Non-Invasive Genetic fragmentomics; aneuploidy detection; non-
) ) ) Ila (42-52)
and Metabolic Testing Raman spectroscopy invasive metabolic
Al monitoring
Al-guided robotics for . S
Al in Laboratory o Submicron precision in
ICSI; predictive _ . _
Automation and Quality ) manipulation; real-time I (53-61)
maintenance ) o
Control ) environmental monitoring
algorithms

2Grade of Evidence Legend (Adapted from
Oxford Centre for Evidence-Based Medicine
Levels):

Ia: Evidence from meta-analysis of high-quality,
randomized controlled trials.

Ila: Evidence from at least one well-designed
controlled study without randomization.

IIb: Evidence from at least one other type of
well-designed quasi-experimental study.

III: Evidence  from  well-designed  non-
experimental descriptive studies, such as
comparative studies, correlation studies, or case-
control studies.

Al in Sperm Selection and Analysis

Al-based sperm assessment has markedly
enhanced the precision and reproducibility of
semen evaluation, overcoming the inherent
subjectivity associated with manual microscopic
grading. Traditional computer-aided sperm
analysis (CASA) systems are limited by
threshold-dependent algorithms that cannot adapt
to morphological variability across patients or
laboratories. In contrast, deep learning—assisted
CASA platforms utilize convolutional neural
networks (CNNs) to automatically extract
complex spatial features from thousands of sperm
images, enabling accurate classification of
motility patterns, head morphology, midpiece
integrity, and tail abnormalities (16, 17).

Recent studies report that Al-enhanced CASA
systems achieved up to 95-97% accuracy in
distinguishing morphologically normal
spermatozoa from abnormal ones-significantly
higher than traditional manual or semi-automated
methods (18, 19). Such systems also
demonstrated higher intra- and inter-observer
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consistency, reducing analytical bias in fertility
assessments.

The integration of machine learning (ML) with
microfluidic sperm-sorting devices represents
another important advancement. Microfluidics,
which mimics the physiological
microenvironment of the female reproductive
tract, can be optimized using ML algorithms to
dynamically adjust flow parameters and selection
thresholds. Studies have shown that Al-driven
microfluidic systems improved sperm recovery
rates, reduced DNA fragmentation, and shortened
processing times by more than 40% compared
with conventional density-gradient
centrifugation(18, = 20).These  technologies
collectively improve selection of high-quality,
motile spermatozoa while minimizing oxidative
stress and mechanical damage-factors crucial for
subsequent fertilization and embryo
development(21).

Furthermore, Al models have been trained to
predict fertilization outcomes based on integrated
sperm motility, morphokinetic trajectories, and
genetic integrity data, offering predictive insights
into sperm performance before insemination.
This predictive capability supports personalized
ART protocols and potentially enhances
fertilization and live birth rates (22, 23).

Al in Oocyte Evaluation

Accurate evaluation of oocyte quality is pivotal
for predicting fertilization success and embryonic
development.  Conventional — morphological
assessment remains subjective and limited to
visual inspection under polarized or light
microscopy. Al and DL technologies have
addressed this limitation by introducing
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objective, quantifiable models (24, 25). Al in
Oocyte Evaluation (6, 26).

In addition, ML algorithms integrating
transcriptomic data from cumulus and granulosa
cells-alongside patient age, BMI, and hormonal
profiles-have enhanced the accuracy of
predicting oocyte retrieval and fertilization
outcomes(27).These multimodal models provide
deeper biological context by linking visual and
molecular signatures of oocyte quality.

Notably, explainable Al (XAI) models are
emerging to improve interpretability by
visualizing feature maps responsible for oocyte
classification. Such explainable frameworks
could facilitate regulatory acceptance and clinical
trust by enabling embryologists to understand
algorithmic reasoning (28, 29).

Al in Embryo Grading and Viability
Prediction

Embryo evaluation is a cornerstone of ART
laboratory decision-making, yet remains highly
dependent on subjective human judgment. The
introduction of Al-driven embryo grading
systems has transformed this process, enhancing
consistency and predictive power (30). Deep
learning models such as iDAScore, KIDScore,
and STORK analyze time-lapse images to
quantify morphokinetic features—cell division
timing, fragmentation dynamics, blastocyst
expansion, and trophectoderm morphology—
providing implantation predictions with 80—-90%
accuracy, surpassing manual grading(¥V-YV).
Generative  Al,  particularly = Generative
Adversarial Networks (GANSs), has recently been
applied to augment embryo datasets by
generating realistic synthetic images. These
expanded datasets enable Dbetter model
generalization and reduce overfitting in data-
limited environments(¥1-Y¢),

Moreover, hybrid models combining
morphokinetic and metabolomic data have
demonstrated improved prediction of euploidy
and live birth potential. For example, Al-based
morphokinetic—metabolomic integrators
achieved AUC > 0.92 for euploid embryo
prediction, highlighting the translational potential
of multi-parameter Al frameworks (6, 37, 38).
Importantly, the goal is not to replace
embryologists but to create decision-support
systems that enhance reproducibility, minimize
bias, and provide real-time feedback during
embryo selection. Ongoing clinical validation

83

studies are assessing the utility of these tools for
improving pregnancy and live birth rates (39-41).
Al in Non-Invasive Genetic and Metabolic
Testing

Non-invasive preimplantation genetic testing
(niPGT) has gained momentum as an alternative
to trophectoderm biopsy, reducing potential harm
to embryos. Al-assisted analysis of cell-free
DNA (cfDNA) and spent culture media allows
reliable chromosomal and metabolic assessment
without physical intervention (42, 43). Machine

learning  models trained on  cfDNA
fragmentomics, methylation profiles, and
secretome data have achieved sensitivity

exceeding 85% in detecting aneuploid embryos
(44-46) .Integration of proteomic and
metabolomic markers further improves embryo
viability prediction, allowing stratification of
embryos based on implantation potential(£¢A [£V).
Al algorithms are also being applied to mass
spectrometry and Raman spectroscopy data from
embryo culture media to detect biochemical
changes linked to metabolic activity. These
models provide continuous, label-free embryo
monitoring, promoting safer and more informed
selection (49, 50). However, despite promising
performance, niPGT algorithms require large-
scale multicenter validation and standardization
before clinical deployment (51, 52).

Al in Laboratory Automation and Quality
Control

Al, coupled with robotics and Internet of Things
(IoT) technology, is driving the automation of
ART laboratories, improving precision and
reducing human error. Automated
micromanipulation systems guided by Al vision
algorithms have achieved submicron precision in
handling gametes and embryos during ICSI and
biopsy procedures(®°¢ ,°Y).  Robotic arms
integrated with vision-based Al can identify
oocytes, inject sperm, and transfer embryos
autonomously  while = maintaining  high
consistency in success rates(55).

Furthermore, predictive maintenance algorithms
are being deployed for incubators and culture
systems, enabling real-time monitoring of
temperature, pH, and gas composition. By
applying anomaly-detection ML  models,
laboratories can detect early deviations and
prevent equipment failures (°V ,°%).These
systems also generate large volumes of
operational data, which can be used to
continuously optimize environmental conditions
for embryo development(58, 59). Al-based
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quality control systems use historical outcome
data to identify laboratory workflow bottlenecks
and performance trends, facilitating continuous
process improvement and compliance with
accreditation standards (60, 61). Collectively,
these advancements are paving the way toward
“smart laboratories”, where automation, robotics,
and machine intelligence  harmoniously
collaborate to enhance laboratory reliability,
safety, and efficiency(58).

Table2. “Overview of Machine Learning and
Deep Learning Models in ART”

Enhancing Accuracy and Reproducibility

One of the most consistent findings across recent
studies is that Al significantly reduces inter- and
intra-observer variability, addressing a long-
standing limitation in ART laboratories (35, 62),
Traditional grading of gametes and embryos is
highly dependent on the subjective experience of
embryologists, leading to  inconsistent
interpretations and variable clinical outcomes.
Al-based tools such as deep learning—assisted
CASA systems and CNN-based embryo scoring
models provide reproducible and quantifiable
assessments that outperform manual approaches
in predictive accuracy (7, 63).

The incorporation of large-scale imaging and
time-lapse datasets has allowed these systems to

recognize subtle morphological and
morphokinetic =~ markers  correlated  with
developmental competence, euploidy, and

implantation success. As a result, Al enhances
reproducibility ~ while offering clinician’s
objective, evidence-based parameters to support
embryo and gamete selection.

Translational Potential and Clinical Benefits
Al-based decision-support systems are not
designed to replace embryologists but rather to
augment their analytical capacity. Clinical
studies indicate that Al-assisted embryo selection
correlates with improved implantation and
ongoing pregnancy rates, particularly when
combined with time-lapse imaging and
morphokinetic analysis (6, 64).

Similarly, deep learning—based sperm and oocyte
evaluation systems provide early, accurate, and
standardized data that allow for better timing of
fertilization and embryo transfer (65, 66).
Beyond improving laboratory precision, Al also
supports personalized reproductive medicine by
integrating multi-omics and clinical data.
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Machine learning models that consider patient-
specific features-such as age, BMI, hormonal
profile, and genetic background-can tailor
stimulation protocols and optimize embryo
transfer strategies, thereby improving success
rates and reducing the physical and emotional
burden of repeated IVF cycles (67-69).
Integration with Robotics, Automation, and
Multi-Omics

The fusion of Al with robotics and automation
heralds the era of the “intelligent laboratory.” Al-
driven micromanipulation systems have already
demonstrated precise control in ICSI and embryo
biopsy procedures, reducing human dependency
and operator-induced errors (70, 71).

Predictive maintenance algorithms further
enhance laboratory stability by continuously
monitoring incubator conditions and preventing
fluctuations detrimental to embryo culture(58).
Simultaneously, integration of Al with multi-
omics datasets-including transcriptomic,
proteomic, and metabolomic data-offers deeper
insight into gamete and embryo physiology(72).
Such integrative approaches are paving the way
toward systems-level reproductive biology,
where Al correlates molecular and phenotypic
profiles to predict developmental potential with
unprecedented precision (73).

Ethical, Regulatory, and Practical Considerations
Despite its promise, the implementation of Al in
ART Ilaboratories introduces ethical and
regulatory challenges (74). Data privacy and
algorithmic transparency remain major concerns,
particularly given the sensitive nature of
reproductive data. The “black-box” nature of
deep neural networks makes it difficult for
clinicians to interpret model decisions and ensure
accountability(40).

Efforts to address these issues include the
development of explainable Al (XAI)
frameworks, which provide visual maps or
interpretable decision pathways, increasing
clinician confidence and patient trust (75).
Regulatory agencies and professional societies
must also define standardized validation
protocols, ensuring that Al systems are clinically
safe, unbiased, and generalizable across diverse
populations(76).

The landscape of reproductive medicine. From
sperm and oocyte evaluation to embryo grading,
non-invasive genetic testing, and laboratory
automation, Al-driven systems are enhancing
precision, objectivity, and efficiency in every
stage of the reproductive process. The
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selection accuracy,
workflows, and

standardizing laboratory
potentially  increasing

extraction of clinically meaningful patterns from

large and complex datasets, improving embryo
Table2. “Overview of Machine Learning and Deep Learning Models in ART”

implantation and live birth rates(77, 78).

Stage ML/DL Model Application Brief Description Input Data Type
CNN Sperm morphology Extract complex visual Microscopic
assessment features from sperm images images
Classical ML (SVM, ) . Analyze morphologic and Numerical &
Random Forest, Predict sperm quality motility features analytical features
Sperm XGBoost) Y vt
Analysis GAN Dataset augmentation Generate synthetic sperm. Images
images to prevent overfitting
Sperm trajecto Analyze temporal motion Time-series /
LSTM / RNN perm frajectory Y p spatiotemporal
prediction sequences of sperm data
Maturity & quality Analyze microscopic images
CNN detection of oocytes and polar body Images
Classical ML (SVM, Predict fertilization Combine image features with | Images + clinical
Oocyte Random Forest) success patient clinical parameters data
Evaluation Ensemble Models Improve prediction Combine multiple models to Images + clinical
accuracy reduce error data
Explainable Al (XAI) Model decision nghhght important fea‘Fures Images
transparency influencing oocyte quality
CNN Blastocyst image _Predlct embryo qua.hty and Time-lapse images
assessment implantation potential
Embryo LSTM / RNN Embryo tlme—l‘apse Predict fie\{elopment based on Sequential images
Grading & growth analysis sequential images
- . Generate synthetic images to
Viability GAN Synthetic embryo data augment datasets Images
Hybrid Models (CNN | Predict euploidy & live | Combine morphology and Images + multi-
+ ML) birth rates multi-omics data omics data
ML (Random Forest, . . Analyze cfDNA, proteomics,
Non- XGBoost) Predict aneuploidy and metabolomies Molecular data
invasive Culture media image Detect metabolic and health
. CNN . . Images
Genetic & analysis changes in embryos
Metz.lbollc D1meqs1ona11ty Extract hidden features from Lo
Testing Autoencoder reduction & pattern Multi-omics data
. molecular datasets
discovery
CNN + Vision-based | Robotic ICSI & biopsy Automated detection of
. oocytes & sperm, robot Images
Al guidance .
assistance
Lab ML (Anomaly Predict equipment Monitor incubator &
. . . . Sensor data
Automation | Detection) failure equipment parameters
& QC Reinforcement o . Learn policies for optimal Environmental &
. Optimize lab conditions .
Learning environmental control outcome data
Predictive Models Workflow optimization Pred'1ct errors and improve Operational &
quality control outcome data
Limitations First, the lack of standardized datasets and image
Despite its transformative potential, several acquisition protocols hampers reproducibility across

limitations constrain the current use of Al in ART.
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centers and populations. Most available datasets are
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retrospective, limited in sample diversity, and healthcare—transforming ART from a procedure of

proprietary, restricting transparency and algorithmic
benchmarking(79, 80).

Second, data privacy and algorithmic bias remain key
concerns. Deep learning systems often operate as
“black boxes,” making it difficult to interpret or audit
their decision processes, which can limit clinical trust
and regulatory approval. Third, Al applications are
frequently tested on small, homogeneous datasets,

limiting generalizability and real-world
applicability(81).

In addition, the integration of Al into ART laboratories
requires  substantial  infrastructure  investment,

including data management systems, computational
resources, and personnel training. These barriers can
delay adoption, particularly in low-resource clinical
settings. Finally, the ethical implications-such as
patient consent, data ownership, and accountability for
Al-driven recommendations-must be carefully
addressed before large-scale deployment(82).

Future Directions
Future research must focus on building multicenter,
standardized, and open-access datasets that enable
transparent and reproducible Al development(83).
Collaborative consortia between fertility clinics,
academic institutions, and Al developers will be
crucial for ensuring data harmonization and model
generalizability(84).
The next generation of Al tools should prioritize
explainability, fairness, and interoperability, aligning
with the principles of responsible Al. Hybrid systems
that integrate robotics, multi-omics profiling, and
digital twins could provide real-time simulation and
optimization of laboratory conditions, advancing the
vision of a fully automated, intelligent ART
laboratory(85).
Additionally, AI’s potential to guide non-invasive
embryo selection and personalized treatment planning
should be explored through prospective, randomized
clinical trials. Integration with wearable biosensors
and telemedicine platforms could expand reproductive
monitoring beyond laboratory boundaries, enhancing
continuity of care(86) .
Finally, international regulatory bodies and scientific
societies should develop unified frameworks for
algorithm validation, quality assurance, and ethical
governance. Only through these concerted efforts can
Al truly fulfill its promise of reshaping reproductive
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probability into a science of precision.Discussion:
The integration of artificial intelligence (Al) into
assisted reproductive technologies (ART) represents a
transformative leap toward objective, data-driven
laboratory medicine. By uniting computational
science and embryology, Al offers new perspectives
for understanding gamete and embryo biology,
optimizing laboratory workflows, and improving
clinical outcomes. This review highlights how recent
Al-driven  innovations—ranging from  sperm
assessment to non-invasive embryo testing—are
reshaping the operational and analytical landscape of
ART laboratories.

Strengths-weaknesses-opportunitiesthreats
analysis

(SWOT)

A SWOT analysis has been conducted to assess the
available evidence linking the artificial intelligence in
ART Laboratories (Fig.2) rengths-weaknesses-
opportunitiesthreats (SWOT) analysis:

Strengths (Internal, positive factors)

Enhanced Accuracy and Objectivity: Reduces reliance
on subjective embryologist assessment and minimizes
human error in selecting sperm, oocytes, and embryos.
Superior Predictive Power: Utilizes predictive models
based on morphokinetic and multi-omics data to
improve implantation and live birth rates.

Laboratory Process Automation: Integrates with
robotics to perform sensitive procedures like ICSI and
embryo biopsy with high, sub-micron precision.
Improved Quality Control (QO) and
Maintenance: Employs predictive algorithms to
monitor incubator conditions in real-time, preventing
detrimental environmental fluctuations.

Increased Reproducibility: Significantly reduces inter-
and  intra-observer  variability,  standardizing
assessments across the laboratory.

Weaknesses (Internal, negative factors)

Limited Standardized Datasets: A lack of unified data
acquisition protocols and limited demographic
diversity in datasets hinder reproducibility and
generalizability.

"Black-Box" Nature of Models: The lack of
transparency in complex Al decision-making
processes can erode clinical trust and complicate
accountability.

High Implementation Costs: Significant investment is
required for computational infrastructure, data storage
systems, and specialized staff training.

Ethical and Regulatory Hurdles: Unresolved concerns
regarding patient data privacy, data ownership, and
liability for Al-driven clinical recommendations.
Opportunities (External, positive factors)

Integration with Multi-Omics Data: Combining
genomic, transcriptomic, and metabolomic data to
create more accurate, holistic predictive models of
embryo viability.
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e Development of Fully Intelligent °
Laboratories: Creating integrated ecosystems that
leverage Al, robotics, and the Internet of Things (IoT)
to create fully optimized, automated workflows.

e Advancement of Personalized Medicine: Tailoring
stimulation protocols and embryo transfer strategies
based on individual patient clinical, molecular, and
genetic profiles.

e International Collaboration and
Consortia: Forming multicenter partnerships to
develop large-scale, standardized, and diverse
datasets for building robust and generalizable
models.

Threats (External, negative factors)

e Data Security and Privacy Risks: Potential for
misuse of highly sensitive reproductive and
genetic data, alongside challenges in ensuring
truly informed consent for data usage.

STRENGTHS

INTERNATIONAL ORGANIZATION OF

Algorithmic Bias: Models trained on limited,
imbalanced, or non-diverse datasets may
perpetuate or even amplify biases, leading to poor
performance  when applied to  broader
populations.

Regulatory and Validation Challenges: The
absence of universally accepted frameworks for
the clinical validation, certification, and ongoing
monitoring of Al algorithms in ART.

Resistance to Adoption: Reluctance among
clinicians and embryologists to adopt and trust Al
systems due to a lack of explainability,
insufficient training, or concerns about job
displacement.

Fig. 2. Strengths-Weaknesses-Opportunities-
Threats (SWOT) analysis has been conducted to
define Al in ART laboratories

Applications of Alin IVF

Domain of Key Examples Kev Result
» Enhanced accuracy and objectivity Application of Al Models / Systems i
« Predictive power for clinical outcomes
» Upto 97% accuracy
« Laboratory process automation ipe'l'm = i CNN-based CASA morphology classification
A ; nalysis an ML + Microfluidics * Improved sperm
Improved quality control Salaction e
¢ Reduced DHA fragmentation
Evaliiation spindle imaging * Improvec maturljcy '
e Limited standardized datasets ML with transcripctri data A eI Sl e
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Conclusion
The rapid evolution of artificial intelligence (Al) in
assisted reproductive technologies (ART) has

redefined the landscape of reproductive medicine (87).
From sperm and oocyte evaluation to embryo grading,
non-invasive  genetic  testing, and laboratory
automation, Al-driven systems are enhancing
precision, objectivity, and efficiency in every stage of
the reproductive process (88). The convergence of
computer vision, deep learning (DL), and predictive
analytics has enabled the extraction of clinically
meaningful patterns from large and complex datasets,
improving embryo selection accuracy, standardizing
laboratory workflows, and potentially increasing
implantation and live birth rates(89, 90).Al is not a
replacement for human expertise but a powerful ally
that augments the capabilities of embryologists and
clinicians. By reducing subjectivity, minimizing inter-
observer variability, and generating evidence-based
recommendations (91, 92), Al promotes consistency
and transparency in laboratory decision-making. Its
role extends beyond image analysis to integrative
prediction models that combine multi-omics, cfDNA,
and patient clinical data, paving the way for
personalized and precision reproductive medicine (93,
94).As these technologies mature, the clinical
translation of Al in ART will depend on rigorous
validation, ethical oversight, and cross-disciplinary
collaboration (92). The successful integration of Al
will ultimately transform reproductive laboratories
into intelligent ecosystems capable of adaptive
learning, continuous quality improvement, and
enhanced patient outcomes.
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